Zahedan Journal of Research in Medical Sciences

Published by: Kowsar

The Antibacterial Activity of SnO2 Nanoparticles against Escherichia coli and Staphylococcus aureus

Seyedeh Matin Amininezhad 1 , * , Alireza Rezvani 2 , Mehdi Amouheidari 3 , Sayed Mohamad Amininejad 4 and Sajjad Rakhshani 2
Authors Information
1 Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, IR Iran
2 Department of Chemistry, University of Sistan and Baluchestan, Zahedan, IR Iran
3 Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, IR Iran
4 Department of Water Engineering, Faculty of Agriculture, Isfahan University of Technology, Isfahan, IR Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: September 28, 2015, 17 (9); e1053
  • Published Online: September 26, 2015
  • Article Type: Research Article
  • Received: February 19, 2014
  • Accepted: May 5, 2014
  • DOI: 10.17795/zjrms-1053

To Cite: Amininezhad S M, Rezvani A, Amouheidari M, Amininejad S M, Rakhshani S. The Antibacterial Activity of SnO2 Nanoparticles against Escherichia coli and Staphylococcus aureus, Zahedan J Res Med Sci. 2015 ; 17(9):e1053. doi: 10.17795/zjrms-1053.

Copyright © 2015, Zahedan University of Medical Sciences.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature. 2008; 452(7185): 301-10[DOI][PubMed]
  • 2. National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule; Final Rule. Federal Register, 71(2006c) : 387-493
  • 3. Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem. 2006; 8(5): 417-32[DOI]
  • 4. Diallo MS, Savage N. Nanoparticles and water quality. J Nanopart Res. 2005; 7(4-5): 325-30
  • 5. Iznaga IR, Petranovskii V, Fuentes GR, Mendoza C, Aguilar AB. Exchange and reduction of Cu(2+) ions in clinoptilolite. J Colloid Interface Sci. 2007; 316(2): 877-86[DOI][PubMed]
  • 6. Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett. 1985; 29(1-2): 211-4[DOI]
  • 7. Hashimoto K, Fujishima A, Watanabe T. TiO2 photocatalysis fundamentals and applications. 1999;
  • 8. Yiannikouris A, Francois J, Poughon L, Dussap CG, Bertin G, Jeminet G, et al. Alkali extraction of beta-d-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. J Agric Food Chem. 2004; 52(11): 3666-73[DOI][PubMed]
  • 9. Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J Photochem Photobiol A Chem. 2004; 165(1-3): 103-7[DOI]
  • 10. Erkan A, Bakir U, Karakas G. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem. 2006; 184(3): 313-21[DOI]
  • 11. Tatsuyama C, Ichimura S. Electrical and Optical Properties of GaSe-SnO2Heterojunctions. Japanese J Appl Phys . 1976; 15(5): 843-7[DOI]
  • 12. Idota Y, Kubota T, Matsufuji A. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science. 1997; 276(5317): 1395-7[DOI]
  • 13. Das S, Kar S, Chaudhuri S. Optical properties of SnO[sub 2] nanoparticles and nanorods synthesized by solvothermal process. J Appl Phys. 2006; 99(11): 114303-10[DOI]
  • 14. Göpel W, Schierbaum KD. SnO2 sensors: current status and future prospects. Sens Actuators B. 1995; 26(1-3): 1-12[DOI]
  • 15. Zhang G, Liu M. Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens Actuators B. 2000; 69(1-2): 144-52[DOI]
  • 16. Castillo JD, Rodríguez VD, Yanes AC, Méndez-Ramos J, Torres ME. Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method. Nanotechnology. 2005; 16(5)-3[DOI]
  • 17. Zhu H, Yang D, Yu G, Zhang H, Yao K. A simple hydrothermal route for synthesizing SnO2 quantum dots. Nanotechnology. 2006; 17(9): 2386-9[DOI]
  • 18. Paraguay-Delgado F, Antúnez-Flores W, Miki-Yoshida M, Aguilar-Elguezabal A, Santiago P, Diaz R, et al. Structural analysis and growing mechanisms for long SnO2 nanorods synthesized by spray pyrolysis. Nanotechnology. 2005; 16(6): 688-94[DOI]
  • 19. Chen D, Gao L. Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process. Chem Phys Lett. 2004; 398(1-3): 201-6[DOI]
  • 20. Birkel A, Loges N, Mugnaioli E, Branscheid R, Koll D, Frank S, et al. Interaction of alkaline metal cations with oxidic surfaces: effect on the morphology of SnO2 nanoparticles. Langmuir. 2010; 26(5): 3590-5[DOI][PubMed]
  • 21. Frohlich D, Kenklies R, Helbig R. Band-Gap Assignment in SnO2by Two-Photon Spectroscopy. Phys Rev Lett. 1978; 41(25): 1750-1[DOI]
  • 22. Mills G, Li Z, Meisel D. Photochemistry and spectroscopy of colloidal arsenic sesquisulfide. J Phys Chem. 1988; 92(3): 822-8[DOI]
  • 23. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005; 39(23): 9370-6[PubMed]
  • 24. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008; 2(10): 2121-34[DOI][PubMed]
  • 25. Hirota K, Sugimoto M, Kato M, Tsukagoshi K, Tanigawa T, Sugimoto H. Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram Int. 2010; 36(2): 497-506[DOI]
  • 26. Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem. 2005; 99(5): 986-93[DOI]
  • 27. Hongbo S, Zongsuo L, Mingan S. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf B Biointerfaces. 2006; 47(2): 132-9[DOI][PubMed]
  • 28. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006; 6(4): 866-70[DOI][PubMed]
  • 29. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide. Adv Funct Mater. 2005; 15(10): 1708-15[DOI]
  • 30. Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003; 54(2): 177-82[DOI]
  • 31. Rincón A, Pulgarin C. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B. 2004; 49(2): 99-112[DOI]
  • 32. Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ, et al. Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol. 2006; 72(9): 6111-6[DOI][PubMed]
  • 33. Pal A, Pehkonen SO, Yu LE, Ray MB. Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light. J Photochem Photobiol A Chem. 2007; 186(2-3): 335-41[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments