Zahedan Journal of Research in Medical Sciences

Published by: Kowsar

Cellular Apoptosis and Blood Brain Barrier Permeability Changes in the Pre-Incubated Chicken Embryo’s Brain by Effect of Electromagnetic Fields

Sima Kalantari 1 , Mohammad Reza Bigdeli 1 , * and Maryam Shams Lahijani 1
Authors Information
1 Department of Physiology, Faculty of Biological Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: February 28, 2015, 17 (2); e1957
  • Published Online: December 25, 2013
  • Article Type: Research Article
  • Received: July 9, 2013
  • Accepted: August 21, 2013

To Cite: Kalantari S, Bigdeli M R, Shams Lahijani M. Cellular Apoptosis and Blood Brain Barrier Permeability Changes in the Pre-Incubated Chicken Embryo’s Brain by Effect of Electromagnetic Fields, Zahedan J Res Med Sci. 2015 ; 17(2):e1957.

Abstract
Copyright © 2015, Zahedan University of Medical Sciences. All rights reserved.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
Introduction
Materials and Methods
Results
Discussion
Acknowledgements
Footnotes
References
  • 1. Coulton LA, Barker AT. The effect of low-frequency pulsed magnetic fields on chick embryonic growth. Physics in Medicine and Biology. 1991; 36(3): 369-81[DOI]
  • 2. Ingole IV, Ghosh SK. Cell phone radiation and developing tissues in chick embryo: A light microscopic study of kidneys. J Anat Soc India. 2006; 55(2): 7-12
  • 3. Beason RC, Semm P. Responses of neurons to an amplitude modulated microwave stimulus. Neuroscience Letters. 2002; 333(3): 175-8[DOI]
  • 4. Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, et al. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J. 2005; 19(12): 1686-8[DOI][PubMed]
  • 5. Lai H, Singh NP. Magnetic-Field-Induced DNA Strand Breaks in Brain Cells of the Rat. Environmental Health Perspectives. 2004; 112(6): 687-94[DOI]
  • 6. Persson BR, Salford LG, Brun A. Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wirel Netw. 1997; 3(6): 455-61[DOI]
  • 7. Williams WM, Platner J, Michaelson SM. Effect of 2450 MHz microwave energy on the blood-brain barrier to hydrophilic molecules. C. Effect on the permeability to [14C]sucrose. Brain Res. 1984; 7(2): 183-90[DOI]
  • 8. Ubeda A, Trillo MA, Chacon L, Blanco MJ, Leal J. Chick embryo development can be irreversibly altered by early exposure to weak extremely-low-frequency magnetic fields. Bioelectromagnetics. 1994; 15(5): 385-98[PubMed]
  • 9. Lahijani MS, Nojooshi SE, Siadat SF. Light and electron microscope studies of effects of 50 Hz electromagnetic fields on preincubated chick embryo. Electromagn Biol Med. 2007; 26(2): 83-98[DOI][PubMed]
  • 10. Lahijani MS, Tehrani DM, Sabouri E. Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white Leghorn chicken embryo. Electromagn Biol Med. 2009; 28(4): 391-413[DOI][PubMed]
  • 11. Aoki T, Sumii T, Mori T, Wang X, Lo EH. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke. 2002; 33(11): 2711-7[PubMed]
  • 12. Delgado JM, Leal J, Monteagudo JL, Gracia MG. Embryological changes induced by weak, extremely low frequency electromagnetic fields. J Anat. 1982; 134: 533-51[PubMed]
  • 13. Saunders RD, Jefferys JG. Weak electric field interactions in the central nervous system. Health Phys. 2002; 83(3): 366-75[PubMed]
  • 14. Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care. 2005; 9(1): 66-75[DOI][PubMed]
  • 15. Farrell CL, Risau W. Normal and abnormal development of the blood-brain barrier. Microsc Res Tech. 1994; 27(6): 495-506[DOI][PubMed]
  • 16. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002; 38(6): 323-37[PubMed]
  • 17. Ayrapetyan SN, Hunanyan A, Hakobyan SN. 4 Hz EMF treated physiological solution depresses Ach-induced neuromembrane current. Bioelectromagnetics. 2004; 25(5): 397-9[DOI][PubMed]
  • 18. Schirmacher A, Winters S, Fischer S, Goeke J, Galla HJ, Kullnick U, et al. Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro. Bioelectromagnetics. 2000; 21(5): 338-45[PubMed]
  • 19. Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980; 23(6): 682-4[PubMed]
  • 20. Franke H, Ringelstein EB, Stogbauer F. Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics. 2005; 26(7): 529-35[DOI][PubMed]
  • 21. Bertossi M, Roncali L, Nico B, Ribatti D, Mancini L, Virgintino D, et al. Perivascular astrocytes and endothelium in the development of the blood-brain barrier in the optic tectum of the chick embryo. Anat Embryol (Berl). 1993; 188(1): 21-9[PubMed]
  • 22. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003; 314(1): 119-29[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments