Zahedan Journal of Research in Medical Sciences

Published by: Kowsar

Cellular Apoptosis and Blood Brain Barrier Permeability Changes in the Pre-Incubated Chicken Embryo’s Brain by Effect of Electromagnetic Fields

Sima Kalantari 1 , Mohammad Reza Bigdeli 1 , * and Maryam Shams Lahijani 1
Authors Information
1 Department of Physiology, Faculty of Biological Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: February 28, 2015, 17 (2); e1957
  • Published Online: December 25, 2013
  • Article Type: Research Article
  • Received: July 9, 2013
  • Accepted: August 21, 2013

To Cite: Kalantari S, Bigdeli M R, Shams Lahijani M. Cellular Apoptosis and Blood Brain Barrier Permeability Changes in the Pre-Incubated Chicken Embryo’s Brain by Effect of Electromagnetic Fields, Zahedan J Res Med Sci. 2015 ; 17(2):e1957.

Copyright © 2015, Zahedan University of Medical Sciences. All rights reserved.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
Materials and Methods
  • 1. Coulton LA, Barker AT. The effect of low-frequency pulsed magnetic fields on chick embryonic growth. Physics in Medicine and Biology. 1991; 36(3): 369-81[DOI]
  • 2. Ingole IV, Ghosh SK. Cell phone radiation and developing tissues in chick embryo: A light microscopic study of kidneys. J Anat Soc India. 2006; 55(2): 7-12
  • 3. Beason RC, Semm P. Responses of neurons to an amplitude modulated microwave stimulus. Neuroscience Letters. 2002; 333(3): 175-8[DOI]
  • 4. Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, et al. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J. 2005; 19(12): 1686-8[DOI][PubMed]
  • 5. Lai H, Singh NP. Magnetic-Field-Induced DNA Strand Breaks in Brain Cells of the Rat. Environmental Health Perspectives. 2004; 112(6): 687-94[DOI]
  • 6. Persson BR, Salford LG, Brun A. Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wirel Netw. 1997; 3(6): 455-61[DOI]
  • 7. Williams WM, Platner J, Michaelson SM. Effect of 2450 MHz microwave energy on the blood-brain barrier to hydrophilic molecules. C. Effect on the permeability to [14C]sucrose. Brain Res. 1984; 7(2): 183-90[DOI]
  • 8. Ubeda A, Trillo MA, Chacon L, Blanco MJ, Leal J. Chick embryo development can be irreversibly altered by early exposure to weak extremely-low-frequency magnetic fields. Bioelectromagnetics. 1994; 15(5): 385-98[PubMed]
  • 9. Lahijani MS, Nojooshi SE, Siadat SF. Light and electron microscope studies of effects of 50 Hz electromagnetic fields on preincubated chick embryo. Electromagn Biol Med. 2007; 26(2): 83-98[DOI][PubMed]
  • 10. Lahijani MS, Tehrani DM, Sabouri E. Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white Leghorn chicken embryo. Electromagn Biol Med. 2009; 28(4): 391-413[DOI][PubMed]
  • 11. Aoki T, Sumii T, Mori T, Wang X, Lo EH. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke. 2002; 33(11): 2711-7[PubMed]
  • 12. Delgado JM, Leal J, Monteagudo JL, Gracia MG. Embryological changes induced by weak, extremely low frequency electromagnetic fields. J Anat. 1982; 134: 533-51[PubMed]
  • 13. Saunders RD, Jefferys JG. Weak electric field interactions in the central nervous system. Health Phys. 2002; 83(3): 366-75[PubMed]
  • 14. Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care. 2005; 9(1): 66-75[DOI][PubMed]
  • 15. Farrell CL, Risau W. Normal and abnormal development of the blood-brain barrier. Microsc Res Tech. 1994; 27(6): 495-506[DOI][PubMed]
  • 16. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002; 38(6): 323-37[PubMed]
  • 17. Ayrapetyan SN, Hunanyan A, Hakobyan SN. 4 Hz EMF treated physiological solution depresses Ach-induced neuromembrane current. Bioelectromagnetics. 2004; 25(5): 397-9[DOI][PubMed]
  • 18. Schirmacher A, Winters S, Fischer S, Goeke J, Galla HJ, Kullnick U, et al. Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro. Bioelectromagnetics. 2000; 21(5): 338-45[PubMed]
  • 19. Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980; 23(6): 682-4[PubMed]
  • 20. Franke H, Ringelstein EB, Stogbauer F. Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics. 2005; 26(7): 529-35[DOI][PubMed]
  • 21. Bertossi M, Roncali L, Nico B, Ribatti D, Mancini L, Virgintino D, et al. Perivascular astrocytes and endothelium in the development of the blood-brain barrier in the optic tectum of the chick embryo. Anat Embryol (Berl). 1993; 188(1): 21-9[PubMed]
  • 22. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003; 314(1): 119-29[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments