Zahedan Journal of Research in Medical Sciences

Published by: Kowsar

Investigating the Anticonvulsant Effects of Repetitive Transcranial Magnetic Stimulation on Perforant Path Kindling Model in Rats

Ali Yadollahpour 1 , S. Mohammed Firoozabadi 2 , * and S. Javad Mirnajafizade 3
Authors Information
1 PhD Student of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2 Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3 Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: February 28, 2015, 17 (2); e1996
  • Published Online: January 19, 2015
  • Article Type: Research Article
  • Received: December 23, 2012
  • Accepted: February 10, 2013

To Cite: Yadollahpour A, Firoozabadi S M, Mirnajafizade S J. Investigating the Anticonvulsant Effects of Repetitive Transcranial Magnetic Stimulation on Perforant Path Kindling Model in Rats, Zahedan J Res Med Sci. 2015 ; 17(2):e1996.

Copyright © 2015, Zahedan University of Medical Sciences. All rights reserved.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
  • 1. Kandel E, Schwartz J, Jessell T. The Howard Hughes Medical Institute. 1923;
  • 2. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004; 73(1): 1-60[DOI][PubMed]
  • 3. Schiller Y, Bankirer Y. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J Neurophysiol. 2007; 97(3): 1887-902[DOI][PubMed]
  • 4. Wiebe S, Blume WT, Girvin JP, Eliasziw M, Efficiency of Surgery for Temporal Lobe Epilepsy Study G. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001; 345(5): 311-8[DOI][PubMed]
  • 5. Akamatsu N, Fueta Y, Endo Y, Matsunaga K, Uozumi T, Tsuji S. Decreased susceptibility to pentylenetetrazol-induced seizures after low-frequency transcranial magnetic stimulation in rats. Neurosci Lett. 2001; 310(2-3): 153-6[PubMed]
  • 6. Rotenberg A, Muller P, Birnbaum D, Harrington M, Riviello JJ, Pascual-Leone A, et al. Seizure suppression by EEG-guided repetitive transcranial magnetic stimulation in the rat. Clin Neurophysiol. 2008; 119(12): 2697-702[DOI][PubMed]
  • 7. Steinhoff BJ, Stodieck SR, Paulus W, Witt TN. Transcranial stimulation. Neurology. 1992; 42(7): 1429-30[PubMed]
  • 8. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000; 406(6792): 147-50[DOI][PubMed]
  • 9. McLean MJ, Engstrom S, Qinkun Z, Spankovich C, Polley DB. Effects of a static magnetic field on audiogenic seizures in black Swiss mice. Epilepsy Res. 2008; 80(2-3): 119-31[DOI][PubMed]
  • 10. Watson GPC. The rat brain in stereotaxic coordinates. 1986;
  • 11. Tonkiss J, Galler J, Morgane PJ, Bronzino JD, Austin-LaFrance RJ. Prenatal protein malnutrition and postnatal brain function. Ann N Y Acad Sci. 1993; 678: 215-27[PubMed]
  • 12. Huang M, Yu J, Wang X, Wang L. The effects of pretreatment with low-frequency transcranial magnetic stimulation on rats with pilocarpine-induced seizures. Chin J Physic Med Rehabil. 2009; 31(4): 228-31
  • 13. Ke S, Zhao H, Wang X. Pretreatment with low-frequency repetitive transcranial magnetic stimulation may influence neuronal Bcl-2 and Fas protein expression in the CA1 region of the hippocampus. Neural Regen Res. 2010; 5(1): 895-900
  • 14. Michael N, Gosling M, Reutemann M, Kersting A, Heindel W, Arolt V, et al. Metabolic changes after repetitive transcranial magnetic stimulation (rTMS) of the left prefrontal cortex: a sham-controlled proton magnetic resonance spectroscopy (1H MRS) study of healthy brain. Eur J Neurosci. 2003; 17(11): 2462-8[PubMed]
  • 15. Wang XM, Yu JM, Zhang JQ. PF4.6 Effects of Pretreatment with Low-Frequency Repetitive Transcranial Magnetic Stimulation on Expressions of Hippocampus GAD65 and NMDAR1 in Rats with Pilocarpine-Induced Seizures. Clin Neurophysiol. 2009; 120[DOI]
  • 16. Anschel DJ, Pascual-Leone A, Holmes GL. Anti-kindling effect of slow repetitive transcranial magnetic stimulation in rats. Neurosci Lett. 2003; 351(1): 9-12[PubMed]
  • 17. Lerchl A, Nonaka KO, Stokkan KA, Reiter RJ. Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields. Biochem Biophys Res Commun. 1990; 169(1): 102-8[PubMed]
  • 18. Wilson BW, Wright CW, Morris JE, Buschbom RL, Brown DP, Miller DL, et al. Evidence for an effect of ELF electromagnetic fields on human pineal gland function. J Pineal Res. 1990; 9(4): 259-69[PubMed]
  • 19. Mavroudakis N, Caroyer JM, Brunko E, Zegers de Beyl D. Effects of diphenylhydantoin on motor potentials evoked with magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1994; 93(6): 428-33[PubMed]
  • 20. Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG. Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol. 2001; 112(5): 931-7[PubMed]
  • 21. Ziemann U, Lonnecker S, Paulus W. Inhibition of human motor cortex by ethanol. A transcranial magnetic stimulation study. Brain. 1995; 118 ( Pt 6): 1437-46[PubMed]
  • 22. Palmieri MG, Iani C, Scalise A, Desiato MT, Loberti M, Telera S, et al. The effect of benzodiazepines and flumazenil on motor cortical excitability in the human brain. Brain Res. 1999; 815(2): 192-9[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments