Zahedan Journal of Research in Medical Sciences

Published by: Kowsar

Antifungal Effect of Magnesium Oxide, Zinc Oxide, Silicon Oxide and Copper Oxide Nanoparticles Against Candida albicans

Abbas Karimiyan 1 , Hossein Najafzadeh 2 , * , Masoud Ghorbanpour 3 and Seyed Hossein Hekmati-Moghaddam 4
Authors Information
1 Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, IR Iran
2 Department of Pharmacology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, IR Iran
3 Department of Microbiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, IR Iran
4 Department of Laboratory Medicine, Faculty of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, IR Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: October 28, 2015, 17 (10); e2179
  • Published Online: October 25, 2015
  • Article Type: Research Article
  • Received: March 1, 2013
  • Accepted: June 12, 2013
  • DOI: 10.17795/zjrms-2179

To Cite: Karimiyan A, Najafzadeh H, Ghorbanpour M, Hekmati-Moghaddam S H. Antifungal Effect of Magnesium Oxide, Zinc Oxide, Silicon Oxide and Copper Oxide Nanoparticles Against Candida albicans, Zahedan J Res Med Sci. 2015 ; 17(10):e2179. doi: 10.17795/zjrms-2179.

Copyright © 2015, Zahedan University of Medical Sciences.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009; 22(2): 235-42[DOI][PubMed]
  • 2. Goffeau A. Drug resistance: the fight against fungi. Nature. 2008; 452(7187): 541-2[DOI][PubMed]
  • 3. Fidel PJ. History and new insights into host defense against vaginal candidiasis. Trends Microbiol. 2004; 12(5): 220-7[DOI][PubMed]
  • 4. Lee HA, Hong S, Choe O, Kim O. Mural folliculitis and alopecia with cutaneous candidiasis in a beagle dog. Lab Anim Res. 2011; 27(1): 63-5[DOI][PubMed]
  • 5. Chekman IS. [Nanopharmacology: experimental and clinic aspect]. Lik Sprava. 2008; (3-4): 104-9[PubMed]
  • 6. Niederberger M, Pinna N. Metal oxide nanoparticles in organic solvents. 2009; [DOI]
  • 7. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 2009; 107(4): 1193-201[DOI][PubMed]
  • 8. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011; 27(7): 4020-8[DOI][PubMed]
  • 9. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009; 30(31): 6333-40[DOI][PubMed]
  • 10. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001; 3(7): 643-6[DOI]
  • 11. Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol. 2004; 96(4): 803-9[PubMed]
  • 12. He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011; 166(3): 207-15[DOI][PubMed]
  • 13. Pfaller MA, Messer SA, Boyken L, Huynh H, Hollis RJ, Diekema DJ. In vitro activities of 5-fluorocytosine against 8,803 clinical isolates of Candida spp.: global assessment of primary resistance using National Committee for Clinical Laboratory Standards susceptibility testing methods. Antimicrob Agents Chemother. 2002; 46(11): 3518-21[PubMed]
  • 14. Moore CB, Walls CM, Denning DW. In vitro activities of terbinafine against Aspergillus species in comparison with those of itraconazole and amphotericin B. Antimicrob Agents Chemother. 2001; 45(6): 1882-5[DOI][PubMed]
  • 15. Jia H, Hou W, Wei L, Xu B, Liu X. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent Mater. 2008; 24(2): 244-9[DOI][PubMed]
  • 16. Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012; 279(7): 1327-38[DOI][PubMed]
  • 17. Khan MF, Hameedullah M, Ansari AH, Ahmad E, Lohani MB, Khan RH, et al. Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. Int J Nanomedicine. 2014; 9: 853-64[DOI][PubMed]
  • 18. Garcia-Saucedo C, Field JA, Otero-Gonzalez L, Sierra-Alvarez R. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. J Hazard Mater. 2011; 192(3): 1572-9[DOI][PubMed]
  • 19. Mahboubi M, Ghazian Bidgoli F. In vitro synergistic efficacy of combination of amphotericin B with Myrtus communis essential oil against clinical isolates of Candida albicans. Phytomedicine. 2010; 17(10): 771-4[DOI][PubMed]
  • 20. Karlowsky JA, Hoban DJ, Zhanel GG, Goldstein BP. In vitro interactions of anidulafungin with azole antifungals, amphotericin B and 5-fluorocytosine against Candida species. Int J Antimicrob Agents. 2006; 27(2): 174-7[DOI][PubMed]
  • 21. Canton E, Peman J, Gobernado M, Viudes A, Espinel-Ingroff A. Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother. 2004; 48(7): 2477-82[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments