Zahedan Journal of Research in Medical Sciences

Published by: Kowsar

Contribution of Collagen Fibers to the Transmural Stress Distribution in Arterial Wall

Hadi Taghizadeh 1 , *
Author Information
1 Division of Biomechanics, Biomedical Engineering Department, Sahand University of Technology, Tabriz, Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: February 2018, 20 (2); e60700
  • Published Online: February 28, 2018
  • Article Type: Research Article
  • Received: August 22, 2017
  • Revised: October 4, 2017
  • Accepted: February 14, 2018
  • DOI: 10.5812/zjrms.60700

To Cite: Taghizadeh H. Contribution of Collagen Fibers to the Transmural Stress Distribution in Arterial Wall, Zahedan J Res Med Sci. 2018 ; 20(2):e60700. doi: 10.5812/zjrms.60700.

Abstract
Copyright © 2018, Zahedan Journal of Research in Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
Footnotes
References
  • 1. Matsumoto T, Hayashi K. Mechanical and dimensional adaptation of rat aorta to hypertension. J Biomech Eng. 1994;116(3):278-83. doi: 10.1115/1.2895731. [PubMed: 7799628].
  • 2. Taghizadeh H, Tafazzoli-Shadpour M, Shadmehr MB. Analysis of arterial wall remodeling in hypertension based on lamellar modeling. J Am Soc Hypertens. 2015;9(9):735-44. doi: 10.1016/j.jash.2015.07.014. [PubMed: 26369443].
  • 3. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85(1):9-23. doi: 10.1038/labinvest.3700215. [PubMed: 15568038].
  • 4. Taghizadeh H, Tafazzoli Shadpour M. Structurally motivated models of the arterial wall tissue. J Multiscale Model. 2013;5(4):1330002. doi: 10.1142/s1756973713300025.
  • 5. Santulli G. Epidemiology of cardiovascular disease in the 21st century: updated numbers and updated facts. J Cardiovasc Dis. 2013;1(1):1-2.
  • 6. Taghizadeh H, Tafazzoli-Shadpour M. Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging. J Mech Behav Biomed Mater. 2017;65:20-8. doi: 10.1016/j.jmbbm.2016.08.011. [PubMed: 27544616].
  • 7. Holzapfel GA, Gasser TC, Ogden RW. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids. 2000;61(1-3):1-48.
  • 8. Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ Res. 1967;20(1):99-111. doi: 10.1161/01.RES.20.1.99. [PubMed: 4959753].
  • 9. Dahl SL, Rhim C, Song YC, Niklason LE. Mechanical properties and compositions of tissue engineered and native arteries. Ann Biomed Eng. 2007;35(3):348-55. doi: 10.1007/s10439-006-9226-1. [PubMed: 17206488].
  • 10. Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface. 2012;9(71):1275-86. doi: 10.1098/rsif.2011.0727. [PubMed: 22171063].
  • 11. Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 2006;3(6):15-35. doi: 10.1098/rsif.2005.0073. [PubMed: 16849214].
  • 12. Takamizawa K, Hayashi K. Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech. 1987;20(1):7-17. doi: 10.1016/0021-9290(87)90262-4. [PubMed: 3558431].
  • 13. Holzapfel GA. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol. 2006;238(2):290-302. doi: 10.1016/j.jtbi.2005.05.006. [PubMed: 16043190].
  • 14. Holzapfel GA, Weizsacker HW. Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med. 1998;28(4):377-92. doi: 10.1016/S0010-4825(98)00022-5. [PubMed: 9805198].
  • 15. Taghizadeh H, Tafazzoli-Shadpour M, Shadmehr MB, Fatouraee N. Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure. Materials (Basel). 2015;8(1):302-16. doi: 10.3390/ma8010302. [PubMed: 28787939].
  • 16. Weiss JA, Maker BN, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng. 1996;135(1-2):107-28. doi: 10.1016/0045-7825(96)01035-3.
  • 17. Famaey N, Vander Sloten J. Soft tissue modelling for applications in virtual surgery and surgical robotics. Comput Methods Biomech Biomed Engin. 2008;11(4):351-66. doi: 10.1080/10255840802020412. [PubMed: 18568830].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments