Zahedan Journal of Research in Medical Sciences

Published by: Kowsar

Effects of Low Intensity Ultrasound on the Chondrogenic Differentiation of Adult Stem Cells From Adipose Tissue

Hajar Shafaei 1 , Abolghasem Esmaeili 2 , Mohammad Mardani 3 , Shahnaz Razavi 3 , Batol Hashenibeni 3 , Mohsen Nasr-Esfahani 4 and Ebrahim Esfandiary 3 , *
Authors Information
1 Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran
2 Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
3 Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
4 Pathology Lab of Alzahra Hospital, Faculty of Sciences, Isfahan University of Medical Sciences, Isfahan, IR Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: May 31, 2016, 18 (5); e6663
  • Published Online: May 17, 2016
  • Article Type: Research Article
  • Received: February 5, 2015
  • Accepted: May 20, 2015
  • DOI: 10.17795/zjrms-6663

To Cite: Shafaei H, Esmaeili A, Mardani M, Razavi S, Hashenibeni B, et al. Effects of Low Intensity Ultrasound on the Chondrogenic Differentiation of Adult Stem Cells From Adipose Tissue, Zahedan J Res Med Sci. 2016 ; 18(5):e6663. doi: 10.17795/zjrms-6663.

Abstract
Copyright © 2016, Zahedan University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Ross MH, Pawlina W. Histology: A text and atlas with correlated cell and molecular biology. 2010; : 164-79
  • 2. Koopman WJ, Moreland LW. Arthritis and allied conditions: A textbook of rheumatology (two volume set). 2004;
  • 3. Jeffery WR. Evolution and development, volume 86 (Current topics in developmental biology). 2009; : 15-6
  • 4. Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002; (402): 21-37[PubMed]
  • 5. O'Driscoll SW. Preclinical cartilage repair: current status and future perspectives. Clin Orthop Relat Res. 2001; (391 Suppl)-401[PubMed]
  • 6. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994; 331(14): 889-95[DOI][PubMed]
  • 7. Chu CR, Convery FR, Akeson WH, Meyers M, Amiel D. Articular cartilage transplantation. Clinical results in the knee. Clin Orthop Relat Res. 1999; (360): 159-68[PubMed]
  • 8. Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics. 1997; 20(6): 525-38[PubMed]
  • 9. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994; 76(4): 579-92[PubMed]
  • 10. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3(4): 393-403[PubMed]
  • 11. Shafaei H, Esmaeili A, Mardani M, Razavi S, Hashemibeni B, Nasr-Esfahani MH, et al. Effects of human placental serum on proliferation and morphology of human adipose tissue-derived stem cells. Bone Marrow Transplant. 2011; 46(11): 1464-71[DOI][PubMed]
  • 12. Warden SJ, Favaloro JM, Bennell KL, McMeeken JM, Ng KW, Zajac JD, et al. Low-intensity pulsed ultrasound stimulates a bone-forming response in UMR-106 cells. Biochem Biophys Res Commun. 2001; 286(3): 443-50[DOI][PubMed]
  • 13. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7(2): 211-28[DOI][PubMed]
  • 14. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13(12): 4279-95[DOI][PubMed]
  • 15. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009; 79(4): 235-44[DOI][PubMed]
  • 16. Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol. 2007; 211(3): 682-91[DOI][PubMed]
  • 17. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996; 273(5275): 613-22[PubMed]
  • 18. Shum L, Coleman CM, Hatakeyama Y, Tuan RS. Morphogenesis and dysmorphogenesis of the appendicular skeleton. Birth Defects Res C Embryo Today. 2003; 69(2): 102-22[DOI][PubMed]
  • 19. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006; 97(1): 33-44[DOI][PubMed]
  • 20. Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L, et al. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs. 2010; 192(3): 158-66[DOI][PubMed]
  • 21. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A. 2002; 99(7): 4397-402[DOI][PubMed]
  • 22. Weiss S, Hennig T, Bock R, Steck E, Richter W. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol. 2010; 223(1): 84-93[DOI][PubMed]
  • 23. Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum. 2003; 48(2): 418-29[DOI][PubMed]
  • 24. Bertram H, Boeuf S, Wachters J, Boehmer S, Heisel C, Hofmann MW, et al. Matrix metalloprotease inhibitors suppress initiation and progression of chondrogenic differentiation of mesenchymal stromal cells in vitro. Stem Cells Dev. 2009; 18(6): 881-92[DOI][PubMed]
  • 25. Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today. 2009; 87(4): 351-71[DOI][PubMed]
  • 26. Schmitt B, Ringe J, Haupl T, Notter M, Manz R, Burmester GR, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation. 2003; 71(9-10): 567-77[DOI][PubMed]
  • 27. Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: Insights from animal models. Birth Defects Res C Embryo Today. 2010; 90(3): 203-13[DOI][PubMed]
  • 28. Zhang J, Wang JH. The effects of mechanical loading on tendons--an in vivo and in vitro model study. PLoS One. 2013; 8(8)[DOI][PubMed]
  • 29. Henrionnet C, Wang Y, Roeder E, Gambier N, Galois L, Mainard D, et al. Effect of dynamic loading on MSCs chondrogenic differentiation in 3-D alginate culture. Biomed Mater Eng. 2012; 22(4): 209-18[DOI][PubMed]
  • 30. Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res. 1999; 17(4): 488-94[DOI][PubMed]
  • 31. Schumann D, Kujat R, Zellner J, Angele MK, Nerlich M, Mayr E, et al. Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro. Biorheology. 2006; 43(3-4): 431-43[PubMed]
  • 32. El-Bialy T, Uludag H, Jomha N, Badylak SF. In vivo ultrasound-assisted tissue-engineered mandibular condyle: a pilot study in rabbits. Tissue Eng Part C Methods. 2010; 16(6): 1315-23[DOI][PubMed]
  • 33. Binderman I, Zor U, Kaye AM, Shimshoni Z, Harell A, Somjen D. The transduction of mechanical force into biochemical events in bone cells may involve activation of phospholipase A2. Calcif Tissue Int. 1988; 42(4): 261-6[PubMed]
  • 34. Schumann D, Kujat R, Nerlich M, Angele P. Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng. 2006; 16(4 Suppl)-52[PubMed]
  • 35. Shafaei H, Esfandiari E, Esmaeili A, Razavi S, Hashemibeni B, Nasr Esfahani MH, et al. Optimizing a novel method for low intensity ultrasound in chondrogenesis induction. Adv Biomed Res. 2013; 2: 79[DOI][PubMed]
  • 36. Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman PI, Klein-Nulend J. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng. 2005; 11(11-12): 1780-8[DOI][PubMed]
  • 37. Knippenberg M, Helder MN, de Blieck-Hogervorst JM, Wuisman PI, Klein-Nulend J. Prostaglandins differentially affect osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Tissue Eng. 2007; 13(10): 2495-503[DOI][PubMed]
  • 38. Lee HJ, Choi BH, Min BH, Son YS, Park SR. Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artif Organs. 2006; 30(9): 707-15[DOI][PubMed]
  • 39. An extremely simple and rapid method for registration of ultrasonic field patterns. Ultrasonics International. : 324-8
  • 40. Bennett GS. A New Method for the Visualization and Measurement of Ultrasonic Fields. J Acous Soc America. 1952; 24(5): 470-4[DOI]
  • 41. Determination of ultrasound beam profile and spatial peak intensities from feild pattern by the Sarvazyan method. 5th biomedical engineering conference.
  • 42. Esmaeili A, Zaker SR. Differential expression of glycine receptor subunit messenger RNA in the rat following spinal cord injury. Spinal Cord. 2011; 49(2): 280-4[DOI][PubMed]
  • 43. McAlinden A, Havlioglu N, Sandell LJ. Regulation of protein diversity by alternative pre-mRNA splicing with specific focus on chondrogenesis. Birth Defects Res C Embryo Today. 2004; 72(1): 51-68[DOI][PubMed]
  • 44. Matsushita H, Blackburn ML, Klineberg E, Zielinska-Kwiatkowska A, Bolander ME, Sarkar G, et al. TASR-1 regulates alternative splicing of collagen genes in chondrogenic cells. Biochem Biophys Res Commun. 2007; 356(2): 411-7[DOI][PubMed]
  • 45. Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, et al. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther. 2008; 10(4)[DOI][PubMed]
  • 46. Stamm S. Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem. 2008; 283(3): 1223-7[DOI][PubMed]
  • 47. van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, Caceres JF. The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol. 2000; 149(2): 307-16[PubMed]
  • 48. Shin C, Feng Y, Manley JL. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature. 2004; 427(6974): 553-8[DOI][PubMed]
  • 49. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003; 423(6937): 332-6[DOI][PubMed]
  • 50. Shafaei H, Baghernezhad H. Ultrasound Effect on Gene Expression of Sex Determining Region Y-box 9 (SOX9) and Transforming Growth Factor β Isoforms in Adipose Stem Cells. Zahedan J Res Med Sci. 2015;
  • 51. Choi KY, Lee SW, Park MH, Bae YC, Shin HI, Nam S, et al. Spatio-temporal expression patterns of Runx2 isoforms in early skeletogenesis. Exp Mol Med. 2002; 34(6): 426-33[DOI][PubMed]
  • 52. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89(5): 755-64[PubMed]
  • 53. Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, et al. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells. 2009; 27(1): 126-37[DOI][PubMed]
  • 54. Mayer-Wagner S, Hammerschmid F, Redeker JI, Schmitt B, Holzapfel BM, Jansson V, et al. Simulated microgravity affects chondrogenesis and hypertrophy of human mesenchymal stem cells. Int Orthop. 2014; 38(12): 2615-21[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments