Zahedan Journal of Research in Medical Sciences

Published by: Neoscriber Demo Publisher

Differentiation of Blastema Cells in Decellularized Bladder Scaffold in vitro

Hashem Rasti 1 , * , Negar Saghiri 1 , Javad Baharara 2 , Nasser Mahdavi-Shahri 3 , Mehdi Marjani 4 , Seyyed Hassan Alavi 5 and Bibiashraf Hoseini 5
Authors Information
1 Young Researchers Club, Mashhad Branch, Islamic Azad University, Mashhad, IR Iran
2 Department of Developmental Biology, Animal Developmental of Applied Biology Research Center, Mashhad Branch, Islamic Azad University, Mashhad, IR Iran
3 Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, IR Iran
4 Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, IR Iran
5 Department of Electron Microscopy, Bu-Ali Research Institute, Mashhad, IR Iran
Article information
  • Zahedan Journal of Research in Medical Sciences: May 28, 2015, 17 (5)
  • Published Online: May 31, 2015
  • Article Type: Research Article
  • Received: January 8, 2014
  • Revised: February 28, 2014
  • Accepted: June 8, 2014
  • DOI: 10.17795/zjrms960

To Cite: Rasti H, Saghiri N, Baharara J, Mahdavi-Shahri N, Marjani M, et al. Differentiation of Blastema Cells in Decellularized Bladder Scaffold in vitro, Zahedan J Res Med Sci. 2015 ; 17(5):-. doi: 10.17795/zjrms960.

Abstract
Copyright © 2015, Zahedan University of Medical Sciences.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009; 5(1): 1-13[DOI][PubMed]
  • 2. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007; 130(4): 601-10[DOI][PubMed]
  • 3. Even-Ram S, Yamada KM. Cell migration in 3D matrix. Curr Opin Cell Biol. 2005; 17(5): 524-32[DOI][PubMed]
  • 4. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011; 17(8): 424-32[DOI][PubMed]
  • 5. Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janmey P, et al. Biomechanics: cell research and applications for the next decade. Ann Biomed Eng. 2009; 37(5): 847-59[DOI][PubMed]
  • 6. Omae H, Zhao C, Sun YL, An KN, Amadio PC. Multilayer tendon slices seeded with bone marrow stromal cells: a novel composite for tendon engineering. J Orthop Res. 2009; 27(7): 937-42[DOI][PubMed]
  • 7. Langer R, Vacanti JP. Tissue engineering. Science. 1993; 260(5110): 920-6[PubMed]
  • 8. Feil G, Daum L, Amend B, Maurer S, Renninger M, Vaegler M, et al. From tissue engineering to regenerative medicine in urology--the potential and the pitfalls. Adv Drug Deliv Rev. 2011; 63(4-5): 375-8[DOI][PubMed]
  • 9. Brown AL, Brook-Allred TT, Waddell JE, White J, Werkmeister JA, Ramshaw JA, et al. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions. Biomaterials. 2005; 26(5): 529-43[DOI][PubMed]
  • 10. Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol. 2002; 14(5): 633-9[PubMed]
  • 11. Glotzbach JP, Wong VW, Gurtner GC, Longaker MT. Regenerative medicine. Curr Probl Surg. 2011; 48(3): 148-212[DOI][PubMed]
  • 12. Tsonis PA. Regeneration in vertebrates. Dev Biol. 2000; 221(2): 273-84[DOI][PubMed]
  • 13. Baghaban Eslaminejad M, Bordbar S. Isolation and characterization of the progenitor cells from the blastema tissue formed at experimentally-created rabbit ear hole. Iran J Basic Med Sci. 2013; 16(2): 109-15[PubMed]
  • 14. Mahdavi Shahri N, Naseri F, Kheirabadi M, Banaie S, Sadeghie Shakib F, Azarniya M. The ultra structural study of blastema in pinna tissues of rabbits with transmission electron microscope. Biol Sci. 2008; 8(6): 993-1000
  • 15. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32(12): 3233-43[DOI][PubMed]
  • 16. Abousleiman RI, Reyes Y, McFetridge P, Sikavitsas V. The human umbilical vein: a novel scaffold for musculoskeletal soft tissue regeneration. Artif Organs. 2008; 32(9): 735-42[DOI][PubMed]
  • 17. Barnes CA, Brison J, Michel R, Brown BN, Castner DG, Badylak SF, et al. The surface molecular functionality of decellularized extracellular matrices. Biomaterials. 2011; 32(1): 137-43[DOI][PubMed]
  • 18. Mahmoudi Z, Moghaddam Matin M, Saeinasab M, Nakhaei-Rad S, Mirahmadi M, Mahdavi Shahri N, et al. Blastema cells derived from rabbit ear show stem cell characteristics. J Cell Mol Res. 2012; 3(1): 25-30
  • 19. Eslaminejad MB, Nikmahzar A, Taghiyar L, Dehghan MM, Kazemi H, Farokhi A, et al. Osteogenic, chondrogenic and adipogenic potential of canine marrow-derived mesenchymal stem cells. Yakhteh Med J. 2007; 1(9): 31-8
  • 20. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7[DOI][PubMed]
  • 21. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976; 4(5): 267-74[PubMed]
  • 22. Friedenstein AJ, Piatetzky SI, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966; 16(3): 381-90[PubMed]
  • 23. Bowers SL, Banerjee I, Baudino TA. The extracellular matrix: at the center of it all. J Mol Cell Cardiol. 2010; 48(3): 474-82[DOI][PubMed]
  • 24. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010; 341(1): 126-40[DOI][PubMed]
  • 25. Baharara J, Mahdavishahri N, Saghiri N, Rasti H. Histological study of interaction between blastema tissue and decellularized three-dimensional matrix of bladder. Zahedan J Res Med Sci. 2012; 14(7): 8-13
  • 26. Tottey S, Johnson SA, Crapo PM, Reing JE, Zhang L, Jiang H, et al. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials. 2011; 32(1): 128-36[DOI][PubMed]
  • 27. Lindberg K, Badylak SF. Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns. 2001; 27(3): 254-66[PubMed]
  • 28. Mahdavi-Shahri N. Geometrical and histological model for mammalian wound repair and regeneration. J Wound Repair Regen. 2003; 11(1): 513-26
  • 29. Tian H, Bharadwaj S, Liu Y, Ma H, Ma PX, Atala A, et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials. 2010; 31(5): 870-7[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments